Evaluation of Engineering Models for Vented Lean Hydrogen Deflagrations

Anubhav Sinha, Vendra C. Madhav Rao and Jennifer X. Wen
Warwick FIRE, School of Engineering
University of Warwick, UK
Outline

• Introduction
• Review of Engineering Models
• Experimental studies
• Performance Evaluation of Engineering Models
• Effect of Obstacles
• Predictions for New Experimental results
• Concluding Remarks
Introduction

- Vented deflagrations – simplest way to relieve pressure
- Experiments are expensive, specially for large enclosures / buildings
- Computational models – challenge to incorporate large range of scales involved, time taking and large computational resources required
- EM – reasonable predictions, simple and fast to use
- Review Engineering models to assess their applicability for hydrogen deflagrations
Review of Engineering Models

These models are reviewed and their applicability is tested with experimental results available in literature and from results generated in this project

- EN14994 (2007)¹
- NFPA 68 (2013)²
- Bauwens et al. (2012)³
- Molkov and Bragin (2015)⁴

• The formulation is divided into two parts, one for a compact enclosure (with \(L/D \leq 2 \)) and the other for elongated enclosure (with \(L/D > 2 \))

• A gas explosion constant \(KG \) which denotes maximum value of pressure rise per unit time is used to determine overpressure

• The constant \(KG \) is determined experimentally

• Effect of initial turbulence is not taken into account

• Not recommended for Hydrogen
This model consists of two formulations – one for low static pressure and another for high static pressure.

It considers the maximum flame speed for any composition of that fuel.

Effect of turbulence on flame speed is accounted in this model formulation.

Different considerations are given to the vent deployment, whether it is a part of a wall or a complete side wall is used as a vent.

In general, predictions from this model are conservative and tend to predict higher overpressures than experimentally obtained values.
Bauwens et al.3 Model

- This model is based on the multi-peak behaviour of vented explosions due to various physical processes involved
- Different formulations are given to derive maximum pressure for each peak
- Three different pressure peaks considered are –
 - External explosion (P1)
 - Flame-Acoustic interaction (P2)
 - Pressure peak due to presence of obstacles (P3)
- The maximum value of all these peaks gives the final overpressure value
Molkov and Bragin Model

- This model is based on the novel concept of Deflagration-Outflow Interaction (DOI) number
- The major assumption is that the overpressure correlates with the DOI number and can be related using the turbulent Bradley number
- Various physical processes including initial turbulence, effect of elongated enclosure, effect of obstacles, fractal nature of flame-front, are accounted for in this model.
- Two formulations are proposed – one for conservative estimate and other for best fit value
Experimental Studies

These experimental studies are used to assess engineering models.

<table>
<thead>
<tr>
<th>Geom</th>
<th>Vol (m³)</th>
<th>Vent Area (m²)</th>
<th>Fuel</th>
<th>Conc (%)</th>
<th>Ignition</th>
<th>Obs</th>
<th>Remarks</th>
</tr>
</thead>
<tbody>
<tr>
<td>Kumar (2006)⁵</td>
<td>Cuboid 120</td>
<td>0.55/1.09/2.19</td>
<td>H₂</td>
<td>8.5-12.0</td>
<td>BW</td>
<td>No</td>
<td>Initial Turb</td>
</tr>
<tr>
<td>Kumar (2009)⁶</td>
<td>Cuboid 120</td>
<td>0.55/1.09/2.19</td>
<td>H₂</td>
<td>5.9-10.8</td>
<td>BW</td>
<td>No</td>
<td>Initial Turb</td>
</tr>
<tr>
<td>Daubech et al. (2011)⁷</td>
<td>Cyl 1/10.5</td>
<td>0.15/2</td>
<td>H₂</td>
<td>10.0-27.0</td>
<td>BW</td>
<td>No</td>
<td>High L/D</td>
</tr>
<tr>
<td>Bauwens et al. (2012)³</td>
<td>Cube 63.7</td>
<td>5.4/2.7</td>
<td>H₂</td>
<td>12.1-19.7</td>
<td>CI, BW, FW</td>
<td>Yes</td>
<td></td>
</tr>
<tr>
<td>Schiavetti, and Carcassi (2016)⁸</td>
<td>Cube 25</td>
<td>1.004</td>
<td>H₂</td>
<td>7.5-12.5</td>
<td>BW, cube centre</td>
<td>Yes</td>
<td>Obstacles</td>
</tr>
</tbody>
</table>

EN14994 Model (2007)¹

- Mixture composition is accounted for the factor KG (for compact enclosures)
- For a given geometry and comparable fuel concentration, vent area is dominant factor
- Data points are clustered as it gives similar prediction for fixed vent size

Predictions for Bauwens et al. (2012) experiments³
- Cubical enclosure - 63.7 m³
- Includes cases with obstacles

Predictions for Daubech et al. (2011) experiments⁷
- Two cylindrical enclosures - 1 m³ and 10.5 m³
- No obstacles

Predictions for Kumar (2009) experiments⁶
- Cubical enclosure - 120 m³
- No obstacles

--- Line shows y = x
NFPA 68 Model (2013)²

- Over-prediction for most data points (conservative estimate) for various experimental results

Predictions for Bauwens et al. (2012) experiments³
- Cubical enclosure - 63.7 m³
- Includes cases with obstacles

Predictions for Daubech et al. (2011) experiments⁷
- Two cylindrical enclosure - 1 m³ and 10.5 m³
- No obstacles

Predictions for Kumar (2006) experiments⁵
- Cubical enclosure - 120 m³ – (L/D = 2.5)
- No obstacles
Bauwens et al. Model (2012)3

- Accounts for several physical aspects - calculates multiple peak pressures
- Under-prediction for Kumar’s experiments – cases with high initial turbulence and high L/D (2.5)
- Some experiments of Daubech et al. (2011) also show high over-prediction (L/D=3.3)

Predictions for Bauwens et al. (2012) experiments3
- Cubical enclosure - 63.7 m3
- Includes cases with obstacles

Predictions for Daubech et al. (2011) experiments7
- Two cylindrical enclosure - 1 m3 and 10.5 m3
- No obstacles

Predictions for Kumar’s experiments5,6
- Cubical enclosure - 120 m3 – (L/D = 2.5)
- No obstacles
Bauwens et al. Model (2012)3

- Under-predicts cases with Forward wall ignition
- Over-predicts for larger enclosure used by Daubech et al. (L/D=3.3) – for higher H$_2$ concentrations

Predictions for Bauwens et al. (2012) experiments3
- Cubical enclosure - 63.7 m3
- Includes cases with obstacles

Predictions for Daubech et al. (2011) experiments7
- Two cylindrical enclosures - 1 m3 (L/D = 1.4)
 and 10.5 m3 (L/D = 3.3)
- No obstacles
Molkov and Bragin Model (2015)4

- In the formulation, two equations are suggested – conservative and best-fit
- Best-fit formula appears to slightly under-predict for most of data points

Predictions for Bauwens et al. (2012) experiments3
- Cubical enclosure - 63.7 m3
- Includes cases with obstacles
 - For obstacles, Ξ_0 is provided in Molkov and Bragin4 (3.5 for BW and 1.0 for CI)

Predictions for Kumar (2009) experiments6
- Cubical enclosure - 120 m3
- No obstacles

Predictions for Daubech et al. (2011) experiments7
- Two cylindrical enclosures - 1 m3 and 10.5 m3
- No obstacles
Molkov and Bragin Model (2015)\(^4\)

- The predictions appear to be reasonable for the experiments compared
- The formulation of coefficient for obstacles is not clearly defined

- Cubical enclosure - 63.7 m\(^3\)
- Includes cases with obstacles

\[\Xi_0 \text{ is provided in Molkov and Bragin}^4 \]
\[(3.5 \text{ for BW and 1.0 for CI}) \]
Effect of Obstacles

- Scarcity of data on systematic study of effect of obstacles
- Schiavetti and Carcassi (2016)\(^8\) – impact of obstacles in a small volume enclosure
- Flat plates are used as obstacles
- More such experiments required for realistic obstacles in a larger geometry

(Schiavetti and Carcassi (2016))\(^8\)
• Different values of Ξ_0 used and plotted with various obstacle configurations
• The best fit value of Ξ_0 is shown in table

<table>
<thead>
<tr>
<th>Obstacle config</th>
<th>Ξ_0 (best fit)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Obs 2</td>
<td>2.00</td>
</tr>
<tr>
<td>Obs 3</td>
<td>2.00</td>
</tr>
<tr>
<td>Obs 4</td>
<td>2.00</td>
</tr>
<tr>
<td>Obs 5</td>
<td>2.00</td>
</tr>
<tr>
<td>Obs 6</td>
<td>3.00</td>
</tr>
<tr>
<td>Obs 8</td>
<td>3.50</td>
</tr>
</tbody>
</table>
Prediction for 20 feet ISO container

Bauwens et al. (2012) model

- Over-prediction is observed for cases with obstacles for both experimental sets

Obs 1 – Bottle
Obs 2 – Pipe rack
Obs 3 – Bottle + Pipe rack

- Cubical enclosure – 33 m³
- Includes cases with obstacles
Prediction for 20 feet ISO container

Venting through door

Obs 1 – Bottle
Obs 2 – Pipe rack
Obs 3 – Bottle + Pipe rack

- Cubical enclosure – 33 m³
- Includes cases with obstacles

Molkov and Bragin (2015) model

- Using $\Xi_o = 3.5$ – (recommended for obstacles in FM global tests)
 gives over-prediction

<table>
<thead>
<tr>
<th>Blockage Ratio</th>
<th>Ξ_o</th>
<th>Experiments</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.06</td>
<td>3.50</td>
<td>Bauwens et al. (2012) - BW ignition</td>
</tr>
<tr>
<td>0.30</td>
<td>1.25</td>
<td>GexCon 20 ft ISO container - bottles – BW</td>
</tr>
<tr>
<td>0.12</td>
<td>1.25</td>
<td>GexCon 20 ft ISO container - pipe and rack - BW</td>
</tr>
</tbody>
</table>
Concluding remarks

- Both NFPA 68 and EN 14994 models over-predicted the experimental measurements.
- The predictions of Bauwens et al. (2012) model and Molkov and Bragin (2015) model (without obstacles) are in reasonable agreement with the experimental data, but both models have some limitations:
 - The predictions of Bauwens et al. (2012) model have relatively large discrepancy for high L/D enclosures and cases with high initial turbulence.
 - Molkov and Bragin (2015) model does not provide any specific treatment for obstacles. Instead, obstacles can only be considered through adjusting the coefficient Ξ_0.
 - Neither considers stratified distribution of the fuel.
- Non-monotonous behaviour observed near H2 concentration of 10% (Kumar-2006 and Schiavetti and Carcassi -2016). This is not captured by any of the models.
Thank You