The aviation sector‘s need for renewable fuels

Arne Roth
Future Technologies and Ecology of Aviation
Lead of Alternative Fuels
Outline

>> Climate protection targets and the resulting need for renewable jet fuel

>> Aviation-specific technical requirements and quantitative demand

>> Key criteria for renewable jet fuel

>> Economic competitiveness

>> Conclusions
Setting the scene: "Paris Agreement“ (COP 21)

>> 2015 United Nations Climate Change Conference (COP 21), Paris

“[…] holding the increase in the global average temperature to well below 2 °C above pre-industrial levels and to pursue efforts to limit the temperature increase to 1.5 °C above pre-industrial levels […]”

> 2 °C target: 66% probability @ 430 – 480 ppm CO₂ by 2100
> Today: 407 ppm already
> Reduction of annual emissions: 41 – 72% by 2050, 78 – 118% by 2100 (rel. to 2010)

Aviation industry’s targets (ATAG targets)

Source: UBA, LBST, BHL, 2016 adapted from ATAG 2012
Aviation industry’s targets vs. current demand

Growth outpacing efficiency gains
Annual increase in fuel consumption (and CO₂ emissions) 4 – 5% in 2014 – 2017 (IATA)

[Graph showing jet fuel consumption from 1990 to 2014 with a trend line indicating the 2005 level]

Source: U.S. Energy Information Agency (www.eia.gov)
Future development of demand and emissions?

Source: Lee et al., Bridging the aviation CO\textsubscript{2} emissions gap: why emissions trading is needed; Manchester Metropolitan University, 2013
A future “emissions gap” is very likely to occur that cannot be closed by efficiency measures alone.

Paradigm shift to renewable energy carriers required.

Source: Lee et al., Bridging the aviation CO₂ emissions gap: why emissions trading is needed; Manchester Metropolitan University, 2013
Aviation will continue to rely on liquid fuels

- Fully electric flight limited by battery mass
 - Bauhaus Luftfahrt Concept Study Ce-Liner
 - Task: Cover 80% of air traffic (900 nm range)
 - Would require specific energy > 1 kWh/kg

- Hybrid electric aircraft concepts still rely on liquid fuel
 - From fuel perspective: No change of primary energy carrier, essentially an efficiency measure

- Liquid cryogenic gasses (LH₂ and LNG)
 - Conceptually feasible, but most studies find no or marginal benefits, as turbines remain technology of choice

Sources: M. Hornung, Ce-Liner – Case Study for eMobility in Air Transportation, Aviation Technology, Integration and Operations Conference. Los Angeles. 12.8.2013
doi:2060/20150017039, Tupolev Tu-155 experimental aircraft: wikipedia
Renewable energy options for aviation

>> Aviation will continue to rely on liquid fuels

> Fully electric flight limited by battery mass
> Bauhaus Luftfahrt Concept Study Ce-Liner
> Tu-155: Cover 80% of air traffic (200 passengers)

Renewable jet fuel must be compatible with current a/c technology and fuel systems (drop-in)

> From fuel perspective: No change of primary energy carrier, essentially an efficiency measure

> Liquid cryogenic gasses (LH₂ and LNG)
> Conceptually feasible, but most studies find no or marginal benefits, as turbines remain technology of choice

Sources: M. Hornung, Ce-Liner – Case Study for eMobility in Air Transportation, Aviation Technology, Integration and Operations Conference. Los Angeles. 12.8.2013
doi:2060/20150017039, Tupolev Tu-155 experimental aircraft: wikipedia
Technical requirements

Designation: D1655 – 10

Standard Specification for Aviation Turbine Fuels

> Developed based on assumption that jet fuel is produced from crude oil
> Conventional Jet A-1/Jet A composed of hydrocarbons
 > Alkanes (paraffins; linear, branched, cyclic)
 > Aromatics
Technical requirements

Desgnation: D1655 – 10

Standard Specification for Aviation Turbine Fuels

- Developed based on assumption that jet fuel is produced from crude oil
- Conventional Jet A-1/Jet A composed of hydrocarbons
 - Alkanes (paraffins; linear, branched, cyclic)
 - Aromatics

Desgnation: D7566 – 12a

Standard Specification for Aviation Turbine Fuel Containing Synthesized Hydrocarbons

- Requirements for synthetic components of drop-in capable alternative jet fuel:
 - Hydrocarbons (alkanes, aromatics)
 - No oxygenated compounds (alcohols, esters, etc.)
 - „Conventional“ boiling range
 - Diverse composition (for high blending ratio)
Technical requirements

Designation: D1655 – 10

Standard Specification for Aviation Turbine Fuels

Developed based on assumption that jet fuel is produced from crude oil

Conventional Jet A-1/Jet A composed of hydrocarbons
- Alkanes (paraffins; linear, branched, cyclic)
- Aromatics

Designation: D7566 – 12a

Standard Specification for Aviation Turbine Fuel Containing Synthesized Hydrocarbons

Requirements for synthetic

Alternative (renewable) jet fuel must be a „synthetic version“ of conventional jet fuel

- No oxygenated compounds (alcohols, esters, etc.)
- „Conventional“ boiling range
- Diverse composition (for high blending ratio)
The „emissions gap“: How much is needed?

Translation of GHG reduction targets into requirements w.r.t. alternative fuels

- Estimation of future jet fuel demand
- 4% annual growth
- 1.5% annual efficiency gain
- Tripling of fuel demand by 2050:
 - 600 Mt/yr (World)
 - 130 Mt/yr (EU)

Pertinent literature available, for example:

The „emissions gap“: How much is needed?

Translation of GHG reduction targets into requirements w.r.t. alternative fuels

2050

For 50% GHG emission rel. to 2005:
- 83% spec. GHG emissions of entire fuel mix (Europe: 130 Mt/yr; World: 600 Mt/yr).

Pertinent literature available, for example:

Key criteria for renewable jet fuel

Suitability
- Drop-in capability
- (liquid hydrocarbons in jet fuel range; „sustainable versions“ of conventional jet fuel)

Sustainability
- Highly favorable GHG balance
- No violation of other sustainability principles

Scalability
- Several 100 Mt per year
- Essentially full substitution

Economic competitiveness
- Under given economic boundary conditions

PtL-derived jet fuel (potentially) meets all „S“ criteria;
But economic competitiveness is only possible under regulated market conditions.
Economic competitiveness

Source: U.S. Energy Information Agency (www.eia.gov)

Production pathway	**Feedstock**	**MFSP (EUR L⁻¹)**
HEFA	Soybean oil	1.04
Used cooking oil	1.02	
Gasification/FT	Municipal solid waste	1.00
Forestry residues	1.33	
Wheat straw	1.93	
AtJ	Forestry residues	1.82
Wheat straw	2.74	
DSHC (SIP)	Forestry residues	3.65
Wheat straw	4.91	
Power-to-Liquids (PtL) | Electric energy, CO₂, water | 1.47
Solar-thermochemical | Solar heat, CO₂, water | 2.23

Sources:
de Jong et al., *Biofuels, Bioprod. Biorefining* 2015, 9 (6), 778–800.

>>> Renewable jet fuel (biogenic and non-biogenic) currently not competitive
Renewable Jet Fuel: Situation today

ASTM certification
- FT-SPK, HEFA-SPK, SIP, AtJ

Renewable fuels in civil aviation
- Lufthansa 2011 (burnFAIR project; HEFA-SPK)
- Many other airlines with similar projects

Airports: Regular supply
- Alternative jet fuel in common hydrant systems
- Oslo Airport, Los Angeles, Toronto (others to follow)

Off-take agreements
- Fulcrum (FT-SPK from MSW): Cathay Pacific (1.52 Mt) & Air BP (1.4 Mt) over 10 years
- Red Rock Biofuels (FT-SPK from forestry residues): FedEx & Southwest Airlines over 8 years
Renewable Jet Fuel: Situation today

>> ASTM certification
 > FT-SPK, HEFA-SPK, SIP, AtJ

>> Renewable fuels in civil aviation
 > Lufthansa 2011 (burnFAIR project; HEFA-SPK)
 > Many airports: Regular supply of alternative jet fuel in common hydrant systems
 > Oslo Airport, Los Angeles, Toronto (others to follow)

BUT: Renewable aviation fuels mainly used on a project basis

>> Airports
 > Alternative fuel supply

>> Off-take agreements
 > Fulcrum (FT-SPK from MSW): Cathay Pacific (1.52 Mt) & Air BP (1.4 Mt) over 10 years
 > Red Rock Biofuels (FT-SPK from forestry residues): FedEx & Southwest Airlines over 8 years
Conclusions

As all other sectors, aviation has to drastically reduce its GHG emissions.

Aviation needs renewable drop-in fuels to meet its GHG targets.
 > „Renewable versions“ of conventional jet fuel

Renewable jet fuel production must be scalable AND sustainable.
 > Sustainable in terms of emissions, water and land use, social issues etc.

PtL-derived jet fuel holds great potential.
 > Suitable, scalable and potentially sustainable

Economic competitiveness is key challenge.
 > Not necessarily cost competitiveness
 > Sustainable and scalable options generally more expensive than conventional jet fuel
Contact

>> **Arne Roth**

Lead of Alternative Fuels
Bauhaus Luftfahrt e.V.
Willy-Messerschmitt-Str. 1
82024 Taufkirchen
Germany

>> Tel.: +49 (0) 89 3 07 48 49 – 46
Fax: +49 (0) 89 3 07 48 49 – 20
arine.roth@bauhaus-luftpahrt.net

>> http://www.bauhaus-luftpahrt.net